3 years ago

Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials

Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials
Metamaterial analogues of electromagnetically induced transparency (EIT) have been intensively studied and widely employed for slow light and enhanced nonlinear effects. In particular, the active modulation of the EIT analogue and well-controlled group delay in metamaterials have shown great prospects in optical communication networks. Here we integrate a monolayer graphene into metal-based terahertz (THz) metamaterials, and realize a complete modulation in the resonance strength of the EIT analogue via manipulating the Fermi level of graphene. The physical mechanism lies in the active tuning of the damping rate of the dark mode resonator through the recombination effect of the conductive graphene. This work presents a novel modulation strategy of the EIT analogue in the hybrid metamaterials, and paves the way towards designing very compact slow light devices to meet the future demand of ultrafast optical signal processing.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317310369

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.