3 years ago

Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells

Mika Hosogi, Ryoichi Araki, Ryo Matoba, Masayuki Hirano, Yusuke Shiode, Shinji Toshima, Fumio Shiraga, Tomoko Yonezawa, Shinichiro Doi, Yuki Morizane

by Ryo Matoba, Yuki Morizane, Yusuke Shiode, Masayuki Hirano, Shinichiro Doi, Shinji Toshima, Ryoichi Araki, Mika Hosogi, Tomoko Yonezawa, Fumio Shiraga

The epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells plays a central role in the development of proliferative vitreoretinopathy (PVR). The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF)-α (10 ng/ml) and transforming growth factor (TGF)-β2 (5 ng/ml). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01). Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5’-amino-5’-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP)-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0181481

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.