3 years ago

[ASAP] One-Pot Hydrothermal Synthesis of SnO2/BiOBr Heterojunction Photocatalysts for the Efficient Degradation of Organic Pollutants Under Visible Light

[ASAP] One-Pot Hydrothermal Synthesis of SnO2/BiOBr Heterojunction Photocatalysts for the Efficient Degradation of Organic Pollutants Under Visible Light
Lin Yang, Haokun Bai, Haijin Liu, Shanqing Zhang, Cuiwei Du, Meng Li, Shengsen Zhang
The establishment of p–n heterojunction between semiconductors is an effective means to improve the performance of semiconductor photocatalysts. For the first time, we synthesize SnO2/BiOBr heterojunction photocatalysts using a one-step hydrothermal method. Systematic material characterizations suggest that the photocatalysts consist of irregular BiOBr nanosheets with the length about 200 nm and width about 150 nm, and SnO2 nanoparticles are anchored uniformly onto the nanosheets. Most importantly, electrochemical characterizations including transient photocurrent profiles and electrochemical impedance spectra suggest that SnO2/BiOBr heterojunctions are created, which facilitates the charge separation and transfer efficiency of photogenerated charge carriers. As such, SnO2/BiOBr photocatalysts exhibit remarkable photocatalytic activities in terms of degrading a series of organic pollutants. Radical trapping experiments and electron spin resonance spectra suggest that superoxide radicals (•O2–) and hydroxyl radicals (•OH) are primary medium species running through the photocatalytic degradation process and enhanced photocatalytic performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.8b09617

DOI: 10.1021/acsami.8b09617

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.