3 years ago

Detecting large deletions at base pair level by combining split read and paired read data

Detecting large deletions at base pair level by combining split read and paired read data
Jeremy S. Pearson, Matthew Hayes
Genomic structural variants (SV) play a significant role in the onset and progression of cancer. Genomic deletions can create oncogenic fusion genes or cause the loss of tumor suppressing gene function which can lead to tumorigenesis by downregulating these genes. Detecting these variants has clinical importance in the treatment of diseases. Furthermore, it is also clinically important to detect their breakpoint boundaries at high resolution. We have generalized the framework of a previously-published algorithm that located translocations, and we have applied that framework to develop a method to locate deletions at base pair level using next-generation sequencing data. Our method uses abnormally mapped read pairs, and then subsequently maps split reads to identify precise breakpoints. On a primary prostate cancer dataset and a simulated dataset, our method predicted the number, type, and breakpoints of biologically validated SVs at high accuracy. It also outperformed two existing algorithms on precise breakpoint prediction, which is clinically important. Our algorithm, called Pegasus, accurately calls deletion breakpoints. However, the method must be extended to allow for germline variant filtering and heterozygous deletion detection. The source code that implements Pegasus can be downloaded from the following URL: http://github.com/mhayes20/Pegasus .
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.