4 years ago

The response of muscle progenitor cells to cutaneous thermal injury

Ali-Reza Sadri, Yusef Yousuf, Marc G. Jeschke, Andrea-kaye Datu, Ahmed Shah, Saeid Amini-Nik, Pantea Samei



Severe burn results in a systemic response that leads to significant muscle wasting. It is believed that this rapid loss in muscle mass occurs due to increased protein degradation combined with reduced protein synthesis. Alterations in the microenvironment of muscle progenitor cells may partially account for this pathology. The aim of this study was to ascertain the response of muscle progenitor cells following thermal injury in mice and to enlighten the cellular cascades that contribute to the muscle wasting.


C57BL/6 mice received a 20% total body surface area (TBSA) thermal injury. Gastrocnemius muscle was harvested at days 2, 7, and 14 following injury for protein and histological analysis.


We observed a decrease in myofiber cross-sectional area at 2 days post-burn. This muscle atrophy was compensated for by an increase in myofiber cross-sectional area at 7 and 14 days post-burn. Myeloperoxidase (MPO)-positive cells (neutrophils) increased significantly at 2 days. Moreover, through Western blot analysis of two key mediators of the proteolytic pathway, we show there is an increase in Murf1 and NF-κB 2 days post-burn. MPO-positive cells were also positive for NF-κB, suggesting that neutrophils attain NF-κB activity in the muscle. Unlike inflammatory and proteolytic pathways, the number of Pax7-positive muscle progenitor cells decreased significantly 2 days post-burn. This was followed by a recovery in the number of Pax7-positive cells at 7 and 14 days, suggesting proliferation of muscle progenitors that accompanied regrowth.


Our data show a biphasic response in the muscles of mice exposed to burn injury, with phenotypic characteristics of muscle atrophy at 2 days while compensation was observed later with a change in Pax7-positive muscle progenitor cells. Targeting muscle progenitors may be of therapeutic benefit in muscle wasting observed after burn injury.

Publisher URL: https://link.springer.com/article/10.1186/s13287-017-0686-z

DOI: 10.1186/s13287-017-0686-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.