5 years ago

De novo peptide sequencing by deep learning [Computer Sciences]

De novo peptide sequencing by deep learning [Computer Sciences]
Baozhen Shan, Lei Xin, Xianglilan Zhang, Ngoc Hieu Tran, Ming Li

De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7–22.9% higher accuracy at the amino acid level and 38.1–64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5–100% coverage and 97.2–99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.