3 years ago

Ground state with nonzero spontaneous magnetization of the two-dimensional spin-1/2 Heisenberg antiferromagnet with frustration.

Hiroki Nakano, Toru Sakai

The S = 1/2 Heisenberg antiferromagnet on the two-dimensional pyramid lattice is studied by the numerical-diagonalization method. This lattice is obtained by the combination of the Lieb lattice and the square lattice. It is known that when interaction on the square lattice is increased from the ferrimagnetic limit of strong interaction on the Lieb lattice, this system shows gradual decrease and disappearance of spontaneous magnetization in the ground state. The present study treats the region near the case of the square-lattice antiferromagnet accompanied by isolated spins by numerical-diagonalization calculations of finite-size clusters with the maximum size of 39 sites. Our numerical results suggest the existence of a new phase with small but nonzero spontaneous magnetization between two zero-spontaneous-magnetization phases.

Publisher URL: http://arxiv.org/abs/1808.04997

DOI: arXiv:1808.04997v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.