3 years ago

Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown.

Luzia Guyer, Undine Krügel, Stefan Hörtensteiner, Kathrin Salinger
During leaf senescence and fruit ripening, chlorophyll is degraded in a multistep pathway into linear tetrapyrroles called phyllobilins. A key feature of chlorophyll breakdown is the removal of the hydrophobic phytol chain that renders phyllobilins water soluble, an important prerequisite for their ultimate storage in the vacuole of senescent cells. Chlorophyllases had been considered for more than a century to catalyze dephytylation in vivo; however, this was recently refuted. Instead, pheophytinase was discovered as a genuine in vivo phytol hydrolase. While chlorophyllase acts rather unspecifically towards different porphyrin substrates, pheophytinase was shown to specifically dephytylate pheophytin, namely Mg-free chlorophyll. The aim of this work was to elucidate in detail the biochemical and structural properties of pheophytinase. By testing different porphyrin substrates with recombinant pheophytinase from Arabidopsis thaliana we show that pheophytinase has high specificity for the acid moiety of the ester bond, namely the porphyrin ring, while the nature of the alcohol, namely the phytol chain in pheophytin, is irrelevant. In silico modelling of the 3-dimensional structure of pheophytinase and subsequent analysis of site-directed pheophytinase mutant forms allowed the identification of the serine, histidine, and aspartic acid residues that compose the catalytic triad, a classical feature of serine-type hydrolases to which both pheophytinase and chlorophyllase belong. Based on substantial structural differences in the models of Arabidopsis pheophytinase and chlorophyllase 1, we discuss potential differences in the catalytic properties of these two phytol hydrolases.

Publisher URL: http://doi.org/10.1093/jxb/erx326

DOI: 10.1093/jxb/erx326

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.