5 years ago

The multiple facets of root iron reduction.

Wolfgang Schmidt, Louis Grillet
The biological significance of iron (Fe) is based on its propensity to oscillate between the ferric and ferrous forms, a transition that also affects its phyto-availability in soils. With the exception of grasses, Fe3+ is unavailable to plants. Most angiosperms employ a reduction-based Fe uptake mechanism, which relies on enzymatic reduction of ferric iron as an obligatory, rate-limiting step prior to uptake. This system functions optimally in acidic soils. Calcicole plants are, however, exposed to environments that are alkaline and/or have suboptimal availability of phosphorous, conditions under which the enzymatic reduction mechanism ceases to work effectively. We propose that auxiliary, non-enzymatic Fe reduction can be of critical importance for conferring fitness to plants thriving in alkaline soils with low bioavailability of Fe and/or phosphorus.

Publisher URL: http://doi.org/10.1093/jxb/erx320

DOI: 10.1093/jxb/erx320

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.