3 years ago

Measuring the Temporal Behavior of Real-World Person Re-Identification.

Meng Zheng, Srikrishna Karanam, Richard J. Radke

Designing real-world person re-identification (re-id) systems requires attention to operational aspects not typically considered in academic research. Typically, the probe image or image sequence is matched to a gallery set with a fixed candidate list. On the other hand, in real-world applications of re-id, we would search for a person of interest in a gallery set that is continuously populated by new candidates over time. A key question of interest for the operator of such a system is: how long is a correct match to a probe likely to remain in a rank-k shortlist of candidates? In this paper, we propose to distill this information into what we call a Rank Persistence Curve (RPC), which unlike a conventional cumulative match characteristic (CMC) curve helps directly compare the temporal performance of different re-id algorithms. To carefully illustrate the concept, we collected a new multi-shot person re-id dataset called RPIfield. The RPIfield dataset is constructed using a network of 12 cameras with 112 explicitly time-stamped actor paths among about 4000 distractors. We then evaluate the temporal performance of different re-id algorithms using the proposed RPCs using single and pairwise camera videos from RPIfield, and discuss considerations for future research.

Publisher URL: http://arxiv.org/abs/1808.05499

DOI: arXiv:1808.05499v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.