5 years ago

Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner

Andrew D.B. Leakey, Craig R. Yendrek, Crystal A. Sorgini, Christopher M. Montes, Elizabeth A. Ainsworth, Lauren M. McIntyre, Patrick J. Brown, Tiago Tomaz, Gorka Erice
Exposure to elevated tropospheric ozone concentration ([O3]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season-long exposure to elevated [O3] (~100 nl L−1) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O3] led to reductions in photosynthetic CO2 assimilation of both inbred (−22%) and hybrid (−33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O3], with some lines showing no change in photosynthesis at elevated [O3]. Based on analysis of inbred line B73, the reduced CO2 assimilation at elevated [O3] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O3 impacts crop performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/pce.13075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.