3 years ago

Improved Chord Recognition by Combining Duration and Harmonic Language Models.

Gerhard Widmer, Filip Korzeniowski

Chord recognition systems typically comprise an acoustic model that predicts chords for each audio frame, and a temporal model that casts these predictions into labelled chord segments. However, temporal models have been shown to only smooth predictions, without being able to incorporate musical information about chord progressions. Recent research discovered that it might be the low hierarchical level such models have been applied to (directly on audio frames) which prevents learning musical relationships, even for expressive models such as recurrent neural networks (RNNs). However, if applied on the level of chord sequences, RNNs indeed can become powerful chord predictors. In this paper, we disentangle temporal models into a harmonic language model---to be applied on chord sequences---and a chord duration model that connects the chord-level predictions of the language model to the frame-level predictions of the acoustic model. In our experiments, we explore the impact of each model on the chord recognition score, and show that using harmonic language and duration models improves the results.

Publisher URL: http://arxiv.org/abs/1808.05335

DOI: arXiv:1808.05335v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.