5 years ago

Use of dilute ammonia gas for treatment of 1,2,3-trichloropropane and explosives-contaminated soils

Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89–94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils.

Publisher URL: www.sciencedirect.com/science

DOI: S0301479717303237

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.