3 years ago

Fusing Geometric Features for Skeleton-Based Action Recognition Using Multilayer LSTM Networks

Yang Yang, Di Xie, Yueting Zhuang, Songyang Zhang, Yi Yang, Xiaoming Liu, , Jun Xiao
Recent skeleton-based action recognition approaches achieve great improvement by using recurrent neural network (RNN) models. Currently, these approaches build an end-to-end network from coordinates of joints to class categories and improve accuracy by extending RNN to spatial domains. First, while such well-designed models and optimization strategies explore relations between different parts directly from joint coordinates, we provide a simple universal spatial modeling method perpendicular to the RNN model enhancement. Specifically, according to the evolution of previous work, we select a set of simple geometric features, and then seperately feed each type of features to a three-layer LSTM framework. Second, we propose a multistream LSTM architecture with a new smoothed score fusion technique to learn classification from different geometric feature streams. Furthermore, we observe that the geometric relational features based on distances between joints and selected lines outperform other features and the fusion results achieve the state-of-the-art performance on four datasets. We also show the sparsity of input gate weights in the first LSTM layer trained by geometric features and demonstrate that utilizing joint-line distances as input require less data for training.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.