3 years ago

Twistor structures and boost-invariant solutions to field equations.

Vladimir V. Kassandrov, Nina V. Markova, Joseph A. Rizcallah

We give a brief overview of a non-Lagrangian approach to field theory based on a generalization of the Kerr-Penrose theorem and algebraic twistor equations. Explicit algorithms for obtaining the set of fundamental (Maxwell, SL(2, C)-Yang-Mills, spinor Weyl and curvature) fields associated with every solution of the basic system of algebraic equations are reviewed. The notion of a boost-invariant solution is introduced, and the unique axially-symmetric and boost-invariant solution which can be generated by twistor functions is obtained, together with the associated fields. It is found that this solution possesses a wide variety of point-, string- and membrane-like singularities exhibiting nontrivial dynamics and transmutations.

Publisher URL: http://arxiv.org/abs/1808.05280

DOI: arXiv:1808.05280v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.