3 years ago

From $1$ to $6$: a finer analysis of perturbed branching Brownian motion.

Anton Bovier, Lisa Hartung

The logarithmic correction for the order of the maximum for two-speed branching Brownian motion changes discontinuously when approaching slopes $\sigma_1^2=\sigma_2^2=1$ which corresponds to standard branching Brownian motion. In this article we study this transition more closely by choosing $\sigma_1^2=1\pm t^{-\alpha}$ and $\sigma_2^2=1\pm t^{-\alpha}$. We show that the logarithmic correction for the order of the maximum now smoothly interpolates between the correction in the iid case $\frac{1}{2\sqrt 2}\ln(t),\;\frac{3}{2\sqrt 2}\ln(t)$ and $\frac{6}{2\sqrt 2}\ln(t)$ when $0<\alpha<\frac{1}{2}$. This is due to the localisation of extremal particles at the time of speed change which depends on $\alpha$ and differs from the one in standard branching Brownian motion. We also establish in all cases the asymptotic law of the maximum and characterise the extremal process, which turns out to coincide essentially with that of standard branching Brownian motion.

Publisher URL: http://arxiv.org/abs/1808.05445

DOI: arXiv:1808.05445v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.