4 years ago

Redox potentials of ubiquinone, menaquinone, phylloquinone, and plastoquinone in aqueous solution

Keisuke Saito, Shinnosuke Kishi, Hiroshi Ishikita, Yuki Kato

Abstract

Quinones serve as redox active cofactors in bacterial photosynthetic reaction centers: photosystem I, photosystem II, cytochrome bc 1, and cytochrome b 6 f. In particular, ubiquinone is ubiquitous in animals and most bacteria and plays a key role in several cellular processes, e.g., mitochondrial electron transport. Their experimentally measured redox potential values for one-electron reduction E m(Q/Q·−) were already reported in dimethylformamide (DMF) versus saturated calomel electrode but not in water versus normal hydrogen electrode (NHE). We calculated E m(Q/Q·−) of 1,4-quinones using a quantum chemical approach. The calculated energy differences of reduction of Q to Q·− in DMF and water for 1,4-quinone derivatives correlated highly with the experimentally measured E m(Q/Q·−) in DMF and water, respectively. E m(Q/Q·−) were calculated to be −163 mV for ubiquinone, −260 mV for menaquinone and phylloquinone, and −154 mV for plastoquinone in water versus NHE.

Publisher URL: https://link.springer.com/article/10.1007/s11120-017-0433-4

DOI: 10.1007/s11120-017-0433-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.