4 years ago

Characterization of methylglyoxal-modified human IgG by physicochemical methods

Characterization of methylglyoxal-modified human IgG by physicochemical methods
Mohd. Adnan Khan, Moinuddin, Khursheed Alam, Zarina Arif

Human IgG is a defence protein and quite reactive to dicarbonyls. In this study, methylglyoxal-induced modification of IgG was examined by various biochemical and biophysical methods. The methylglyoxal-induced changes in IgG were monitored by UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy, 1-anilinonaphthalene-8-sulfonic acid (ANS), and thermal denaturation studies. Aggregate formation was studied by Thioflavin T (ThT), Congo red (CR) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Spectroscopic studies suggested gross changes in MGO-modified IgG. Fluorogenic AGEs appeared during modification and the MGO-modified IgG gained thermostability. The reaction produced oxidative stress in the medium because carbonyl content increased manifold and sulfhydryl groups decreased. Enhanced binding of the MGO-modified IgG by Congo red and Thioflavin T suggests crosslinking and aggregation. This was supported by SEM and TEM results.

Publisher URL: http://www.tandfonline.com/doi/full/10.1080/07391102.2017.1383309

DOI: 10.1080/07391102.2017.1383309

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.