4 years ago

A sobering assessment of small-molecule force field methods for low energy conformer predictions

A sobering assessment of small-molecule force field methods for low energy conformer predictions
John A. Keith, Ilana Y. Kanal, Geoffrey R. Hutchison
We have carried out a large scale computational investigation to assess the utility of common small-molecule force fields for computational screening of low energy conformers of typical organic molecules. Using statistical analyses on the energies and relative rankings of up to 250 diverse conformers of 700 different molecular structures, we find that energies from widely used classical force fields (MMFF94, UFF, and GAFF) show unconditionally poor energy and rank correlation with semiempirical (PM7) and Kohn–Sham density functional theory (DFT) energies calculated at PM7 and DFT optimized geometries. In contrast, semiempirical PM7 calculations show significantly better correlation with DFT calculations and generally better geometries. With these results, we make recommendations to more reliably carry out conformer screening. Almost all small molecules have multiple conformers, which are typically evaluated using classical molecular mechanics forcefields, such as MMFF94. Unfortunately, such methods exhibit poor correlation with PM7 and DFT energies and geometries. In general, conformer energies and rankings should be performed with PM7-optimized geometries and DFT single-points.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/qua.25512

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.