4 years ago

Dynamic characteristics of a flagellar motor protein analyzed using an elastic network model

Dynamic characteristics of a flagellar motor protein analyzed using an elastic network model
At the base of a flagellar motor, its rotational direction and speed are regulated by the interaction between rotor and stator proteins. A switching event occurs when the cytoplasmic rotor protein, called C-ring, changes its conformation in response to binding of the CheY signal protein. The C-ring structure consists of FliG, FliM, and FliN proteins and its conformational changes in FliM and FliG including HelixMC play an important role in switching the motor direction. Therefore, clarifying their dynamic properties as well as conformational changes is a key to understanding the switching mechanism of the motor protein. In this study, to elucidate dynamic characteristics of the C-ring structure, both harmonic (intrinsic vibration) and anharmonic (transition pathway) analyses are conducted by using the symmetry-constrained elastic network model. As a result, the first three normal modes successfully capture the essence of transition pathway from wild type to CW-biased state. Their cumulative square overlap value reaches up to 0.842. Remarkably, it is also noted from the transition pathway that the cascade of interactions from the signal protein to FliM to FliG, highlighted by the major mode shapes from the first three normal modes, induces the reorientation (∼100° rotation of FliGC5) of FliG C-terminal that directly interacts with the stator protein. Presumably, the rotational direction of the motor protein is switched by this substantial change in the stator-rotor interaction.

Publisher URL: www.sciencedirect.com/science

DOI: S1093326317305041

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.