3 years ago

Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution

Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution
Katherine E. Shulenberger, Timothy S. Sinclair, Michel Nasilowski, Hendrik Utzat, Odin B. Achorn, Moungi G. Bawendi
Cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) have recently become a promising material for optoelectronic applications due to their high emission quantum yields and facile band gap tunability via both halide composition and size. The spectroscopy of single PNCs enhances our understanding of the effect of confinement on excitations in PNCs in the absence of obfuscating ensemble averaging and can also inform synthetic efforts. However, single PNC studies have been hampered by poor PNC photostability under confocal excitation, precluding interrogation of all but the most stable PNCs, leading to a lack of understanding of PNCs in the regime of high confinement. Here, we report the first comprehensive spectroscopic investigation of single PNC properties using solution-phase photon-correlation methods, including both highly confined and blue-emitting PNCs, previously inaccessible to single NC techniques. With minimally perturbative solution-phase photon-correlation Fourier spectroscopy (s-PCFS), we establish that the ensemble emission linewidth of PNCs of all sizes and compositions is predominantly determined by the intrinsic single NC linewidth (homogeneous broadening). The single PNC linewidth, in turn, dramatically increases with increasing confinement, consistent with what has been found for II–VI semiconductor nanocrystals. With solution-phase photon antibunching measurements, we survey the biexciton-to-exciton quantum yield ratio (BX/X QY) in the absence of user-selection bias or photodegradation. Remarkably, the BX/X QY ratio depends both on the PNC size and halide composition, with values between ∼2% for highly confined bromide PNCs and ∼50% for intermediately confined iodide PNCs. Our results suggest a wide range of underlying Auger rates likely due to transitory charge carrier separation in PNCs with relaxed confinement.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03120

DOI: 10.1021/acs.nanolett.7b03120

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.