3 years ago

Free Carrier Front Induced Indirect Photonic Transitions: A New Paradigm for Frequency Manipulation on Chip

Free Carrier Front Induced Indirect Photonic Transitions: A New Paradigm for Frequency Manipulation on Chip
Alexander Yu. Petrov, Mahmoud A. Gaafar, Manfred Eich
Nonlinear degenerate four wave mixing and cross phase modulation are established approaches for all optical frequency manipulation in a silicon chip. These approaches require exact group velocity and/or phase velocity matching of pump, signal, and idler. On the other hand, several experimental demonstrations were presented recently, where frequency of light was changed by a free carrier front propagating in a silicon waveguide. This Doppler-like effect is less known, but has important advantages for frequency manipulation on chip. It requires no phase velocity matching and is not dependent on the shape and duration of the pump pulse. It also allows packet switching and can operate in a pump power independent regime. Here, we shortly review the work on front induced indirect transitions in silicon slow light waveguides. We consider three possible interaction regimes: transmission through the front, reflection from the front, and moving with the front called surfing. We derive analytical equations for the front with a linearly rising edge, which provide a unified description of the frequency shift in all three regimes. Finally, we compare the front induced dynamic frequency conversion to the frequency shifting based on nonlinear effects like cross-phase modulation and four wave mixing.

Publisher URL: http://dx.doi.org/10.1021/acsphotonics.7b00750

DOI: 10.1021/acsphotonics.7b00750

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.