4 years ago

Subsurface Imaging of the Cores of Polymer-Encapsulated Cobalt Nanoparticles Using Force Modulation Microscopy

Subsurface Imaging of the Cores of Polymer-Encapsulated Cobalt Nanoparticles Using Force Modulation Microscopy
Julia Y. Chan, Lawrence J. Hill, Stephen M. Deese, Jayne C. Garno, Jeffrey Pyun, Lauren E. Englade-Franklin
Force modulation microscopy (FMM) is a mode of scanning probe microscopy that can be used to visualize changes of tip–sample interactions for hard and soft areas of samples such as polymers and organic thin films. In designed experiments, polystyrene-encapsulated cobalt nanoparticles were imaged with FMM using a home-built sample stage for sample actuation. Regions of the outer polymer coating and the inner cobalt nanoparticle were resolved with high resolution. Using FMM, differences in the elastic and viscoelastic properties of the nanoparticles were visualized with nanoscale resolution by monitoring the return amplitude and phase signals as the AFM tip is scanned over areas of a sample. Regions of the sample with greater elasticity and viscoelasticity generate a weaker signal relative to harder areas because more of the energy associated with the cantilever oscillation is dissipated by the material. Areas with greater elasticity will tend to absorb more of the energy of the cantilever causing the amplitude of the oscillation to be dampened. Conversely, harder areas, having a lower elasticity, will cause the tip to oscillate closer to the input driving amplitude of the piezoceramic. The polymer-encapsulated nanoparticles were patterned using two-particle lithography to prevent aggregation of the nanoparticles.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07994

DOI: 10.1021/acs.jpcc.7b07994

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.