4 years ago

Unidirectional Transport of Water through an Asymmetrically Charged Rotating Carbon Nanotube

Unidirectional Transport of Water through an Asymmetrically Charged Rotating Carbon Nanotube
Ali Moosavi, Milad Khodabakhshi
Achieving a high speed, unidirectional water flow through carbon nanotubes (CNTs) is a key factor in designing novel nanofluidic devices. In this study, utilizing molecular dynamics (MD) simulations, we propose a novel nanoscale water pump for directed water transportation using charged rotating CNTs. Two basic conditions for stable water flow, including thermodynamic nonequilibrium and spatial asymmetry, are provided by introducing partial charges on carbon atoms of the channel with asymmetric patterns and its rotation, respectively. We demonstrate that the performance of the water pump is proportional to the gradient of a linear charge distribution and angular velocity of the rotation. Our results indicate that, in a constant total charge, there is a linear relationship between water flux and charge difference of the nanotube ends. In addition there is a logarithmic relationship between the water flux and the nanotube angular velocity. In fact, there is no considerable flux when the nanotube is rotating with low angular velocities. However, increasing the angular velocity first increases the flux rate and then leads to its saturation. Furthermore, the relationship between the water flux and charge density is investigated. The results can be used in designing future CNT-based pumps and high-flux nanoscale systems for practical applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06003

DOI: 10.1021/acs.jpcc.7b06003

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.