5 years ago

Percolating Behavior of Nanoparticles in Block Copolymer Host: Hybrid Particle-Field Simulations

Percolating Behavior of Nanoparticles in Block Copolymer Host: Hybrid Particle-Field Simulations
Jiaping Lin, Qian Zhang, Liangshun Zhang
The hybrid particle–field method is extended to investigate self-assembly and percolating behavior of nanocomposites containing block copolymers and nanoparticles. The self-assembled nanostructures serve as templates to guide organization and distribution of nanoparticles. The percolation threshold of nanoparticles in the host of block copolymers is discussed in terms of composition of block copolymers, radius, and aspect ratio of nanoparticles. The simulated results demonstrate that the block copolymers have a synergistic or antagonistic effect on emergence of percolating network of nanoparticles, depending on the copolymer composition. There exists an optimal value of copolymer composition for lowering the percolation threshold of nanoparticles. In addition, regulating the geometrical shape of nanoparticles further lowers the percolation threshold of nanoparticles dispersed in the block copolymers. These simulated results provide useful guidelines for designing high-performance composite materials with light weight.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07337

DOI: 10.1021/acs.jpcc.7b07337

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.