3 years ago

Computer Vision and Machine Learning for Human Rights Video Analysis: Case Studies, Possibilities, Concerns, and Limitations

Jay D. Aronson

Abstract

Citizen video and other publicly available footage can provide evidence of human rights violations and war crimes. The ubiquity of visual data, however, may overwhelm those faced with preserving and analyzing it. This article examines how machine learning and computer vision can be used to make sense of large volumes of video in advocacy and accountability contexts. These technologies can enhance the efficiency and effectiveness of human rights advocacy and accountability efforts, but only if human rights organizations can access the technologies themselves and learn how to use them to promote human rights. As such, computer scientists and software developers working with the human rights community must understand the context in which their products are used and act in solidarity with practitioners. By working together, practitioners and scientists can level the playing field between the human rights community and the entities that perpetrate, tolerate, or seek to cover up violations.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.