5 years ago

Efficient Two-Photon Fluorescent Probe for Glutathione S-Transferase Detection and Imaging in Drug-Induced Liver Injury Sample

Efficient Two-Photon Fluorescent Probe for Glutathione S-Transferase Detection and Imaging in Drug-Induced Liver Injury Sample
Shan Yao, Jin Li, Tanggang Deng, Hong-Wen Liu, Jing Zhang, Xiao-Bing Zhang, Lili Feng, Xiao-Xiao Hu, Hong-Min Meng, Zhen Jin
Drug-induced liver injury (DILI) is a potential complication of any prescribed medication. So far, the diagnosis of DILI is still a clinical challenge due to the lack of efficient diagnosis method. Glutathione S-transferase (GST), with a high concentration in liver cytosol, can reduce toxicity and facilitate urinary excretion by catalyzing the conjugation of glutathione (GSH) with reactive metabolites in liver. When liver is seriously damaged, GST and GSH will be released into plasma from liver cytosol, which caused a lower GST activity in liver cytosol. Therefore, monitoring the level of GST activity in liver tissue may be a potential strategy for diagnosis of DILI. Here, we reported a two-photon probe P-GST for GST activity detection for the first time. In the proposed design, a donor-π-acceptor (D-π-A) structured naphthalimide derivative with efficient two-photon properties was chosen as the fluorescent group, and a 2,4-dinitrobenzenesulfonate group was employed as the GST recognition unit, which also acted as the fluorescence quencher. In the present of GST and GSH, the recognition unit was removed and the fluorophore was released, causing a 40-fold enhancement of fluorescence signal with a detection limit of 35 ng/mL. At last, P-GST was successfully applied in two-photon imaging of GST in cells and DILI samples, which demonstrated its practical application in complex biosystems as a potential method for diagnosis of DILI.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01659

DOI: 10.1021/acs.analchem.7b01659

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.