5 years ago

Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance

Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance
Feng Xu, Jun Yang
Engineering reversible cross-links between nanoparticles and polymer matrix is a promising avenue to reinforce the mechanical properties of elastomers and in particular soft hydrogels. In this work, we study a model system of composite hydrogel reinforced with cellulose nanofibrils (CNFs), where the integration of reversible hydrogen bonds into a lightly covalently cross-linked polyacrylamide (PAAm) matrix. This approach yields the dual cross-linked networks with synergistically improved strength, modulus, and toughness. The reversible nature of the hydrogen-bonded cross-links manifests a strong strain rate (έ) dependent dynamics properties. The CNF-PAAm interaction among physically adsorbed chains on the surface of CNF is examined as a function of CNF fraction by sum frequency generation spectroscopy. The results indicate a decrease of the number of free −OH groups on the CNF surface. Moreover, the deformation-resting experiments show a unique interface stiffening mechanism where the polymer chains desorbed from the CNF surface under oscillatory shear become entangled during resting time. The bending micromechanics test reveals that the CNF interfacial slip imparts the capability to strengthen the composites during deformation. The fibril pull-out process activates a series of dissipation mechanisms that increase the crack propagation resistance. These findings advance our understanding the role of interfacial layer in microscopic reinforcement mechanism and provide a constitutive foundation for exploring the deformation behaviors of the cellulosic hydrogels.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00730

DOI: 10.1021/acs.biomac.7b00730

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.