4 years ago

Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field

Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field
Likai Hou, Xiaokang Deng, Weiyu Liu, Yankai Jia, Hongyuan Jiang, Yukun Ren
Advances in microfluidic emulsification have enabled the generation of exquisite multiple-core droplets, which are promising structures to accommodate microreactions. An essential requirement for conducting reactions is the sequential coalescence of the multiple cores encapsulated within these droplets, therefore, mixing the reagents together in a controlled sequence. Here, a microfluidic approach is reported for the conduction of two-step microreactions by electrically fusing three cores inside double-emulsion droplets. Using a microcapillary glass device, monodisperse water-in-oil-in-water droplets are fabricated with three compartmented reagents encapsulated inside. An AC electric field is then applied through a polydimethylsiloxane chip to trigger the sequential mixing of the reagents, where the precise sequence is guaranteed by the discrepancy of the volume or conductivity of the inner cores. A two-step reaction in each droplet is ensured by two times of core coalescence, which totally takes 20–40 s depending on varying conditions. The optimal parameters of the AC signal for the sequential fusion of the inner droplets are identified. Moreover, the capability of this technique is demonstrated by conducting an enzyme-catalyzed reaction used for glucose detection with the double-emulsion droplets. This technique should benefit a wide range of applications that require multistep reactions in micrometer scale. Two-step microreactions are achieved in double-emulsion droplets by sequentially coalescing the encapsulated contents using an AC electric field in microfluidic chips. The fusing sequence can be precisely controlled by the volume or ion concentration of the encapsulated droplets. The approach is promising for accommodating various chemical and biological reactions at micrometer scale.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201702188

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.