3 years ago

Cytotoxic properties of the alkaloid rutaecarpine and its oligocyclic derivatives and chemical modifications to enhance water-solubility

Cytotoxic properties of the alkaloid rutaecarpine and its oligocyclic derivatives and chemical modifications to enhance water-solubility
The alkaloid rutaecarpine and its derivatives have been described as cytotoxic and hold potential as antitumor agents. Nevertheless, their synthesis is demanding and compounds display poor water solubility. Herein, we describe the synthesis of two sets of rutaecarpine derivatives with amine functions to improve solubility. Using a classic shake-flask experiment and a potentiometric titration platform, the water solubility of the compounds was determined. Solubility improved significantly with the amine functions connected over the indole-N atom. Reduction of metabolic activity and cell viability on HeLa cells was in the same range or better for these derivatives compared to the chemically unaltered parent compounds prepared in a new synthetic procedure established in our group.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X1730848X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.