4 years ago

Additive effect of heparin on the photoinactivation of Escherichia coli using tricationic P-porphyrins

Additive effect of heparin on the photoinactivation of Escherichia coli using tricationic P-porphyrins
Polycationic porphyrins have received substantial attention in developing singlet oxygen-sensitizers for biological use such as in the photoinactivation of bacteria and photodynamic therapy (PDT) of tumor cells because they have strong binding affinities for DNA and proteins. However, these strong cellular interactions can retard elimination of the drug after PDT. Therefore, the studies on the interactions of porphyrins with other molecules present much interest, in order to modulate the sensitizers‘ activity or even remove them from the human body after PDT. Here, we studied the additive effect of heparin on the photoinactivation by polycationic porphyrins using Escherichia coli as a model cell. Tricationic P-porphyrin sensitizers substituted with an N-alkylpyridinium group (alkyl = pentyl (1a), hexyl (1b), and heptyl (1c)) or N-hexylammonium (1d) as the axial ligand were used. Additionally, dicationic Sb-porphyrin substituted with an N-hexylpyridinium group (1e) was prepared. We studied the additive effect of heparin on the photoinactivation of E. coli by 1a-1e. The bactericidal activities were evaluated using the half-life (T 1/2 in min) of E. coli and the minimum effective concentrations ([P]) of the porphyrin sensitizers. In the absence of heparin, the [P] values were determined to be 0.4 - 0.5μM for 1a1c and 2.0 μM for 1d1e. The bactericidal activity of 1a1c was completely retarded by the addition of heparin (1.0 μM). However, the addition of heparin (1.0 μM) could not completely retard the bactericidal activity of 1d1e whose [P] values were relatively large. It is suggested that tricationic 1a1c adsorbed onto the anionic heparin through electrostatic interactions. The adsorption of 1 on heparin disturbs the uptake of 1 into E. coli cells. Thus, the addition of heparin was found to be a useful method for retarding photoinactivation.

Publisher URL: www.sciencedirect.com/science

DOI: S0960894X1731017X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.