3 years ago

Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions

Bingqing Wang, Junfeng Liu, Wenxian Liu, Weina Zhang


Composites incorporating nanoparticles (NPs) within metal-organic frameworks (MOFs) find applications in many different fields. In particular, using MOF layers as molecular sieves built on the NPs could enable selectivity in heterogeneous catalysis. However, such composites typically exhibit low catalytic efficiency, due to the slow diffusion of the reactants in the long and narrow channels of the MOF shell. In order to improve the catalytic efficiency of these systems, here we report the fabrication of NPs incorporated in nanosized MOFs (NPs@nano-MOFs), obtained by reducing the size of the MOF crystals grown around the NPs. The crystal size of the composites was controlled by modulating the nucleation rate of the MOFs during the encapsulation of pre-synthesized and catalytically active NPs; in this way, NPs@MOF crystals smaller than 50 nm were synthesized and subsequently used as highly efficient catalysts. Due to the shorter path from the MOF surface to the active sites, the obtained Pt@nano-MOFs composites showed a higher conversion rate than their larger-sized counterparts in the synthesis of imines via cascade reaction of nitrobenzene and in the hydrogenation of olefins, while retaining the excellent size and shape selectivity associated with the molecular sieving effect of the MOF layer. The present strategy can also be applied to prepare other encapsulated nanostructures combining various types of NPs and nano-MOFs, thus highlighting the broad potential of this approach for developing optimized catalysts with high reactivity and selectivity.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1595-2

DOI: 10.1007/s12274-017-1595-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.