3 years ago

Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive

Hongzheng Chen, Qin Hu, Chang-Zhi Li, Minmin Shi, Thomas P. Russell, Muhammad Naeem Shah, Zhongqiang Zhang, Shuhua Zhang, Feng Liu


The ternary strategy for incorporating multiple photon-sensitive components into a single junction has emerged as an effective method for optimizing the nanoscale morphology and improving the device performance of organic solar cells (OSCs). In this study, efficient and stable ternary OSCs were achieved by introducing the small-molecule dye (5E,5′E)-5,5′-(4′,4″-(1,2-diphenylethene-1,2-diyl)bis(biphenyl-4′,4-diyl))bis(methan-1-yl-1-ylidene)bis(3-ethyl-2-thioxothia zolidin-4-one) (BTPE-Rn) into poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) blend films processed using a 1,8-diiodooctane (DIO)-free solvent. The incorporation of BTPE-Rn enhanced the short-circuit current density and fill factor of the ternary OSCs compared with those of binary OSCs. An investigation of the optical, electronic, and morphological properties of the ternary blends indicated that the third component of BTPE-Rn not only promoted the photon utilization of blends through the energy-transfer process but also improved the electron mobility of the blends owing to the fullerene-rich nanophase optimization. More importantly, this ternary strategy of utilizing a small-molecule dye to replace the photounstable DIO additive enhanced the operational stability of the OSCs.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1589-0

DOI: 10.1007/s12274-017-1589-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.