4 years ago

Surface states in TiO 2 submicrosphere films and their effect on electron transport

Wangchao Chen, Jiawei Zheng, Linhua Hu, Zhaoqian Li, Yong Ding, Li’e Mo, Ling Jiang, Songyuan Dai

Abstract

Owing to their special three-dimensional network structure and high specific surface area, TiO2 submicrospheres have been widely used as electron conductors in photoanodes for solar cells. In recent years, utilization of TiO2 submicrospheres in solar cells has greatly boosted the photovoltaic performance. Inevitably, however, numerous surface states in the TiO2 network affect electron transport. In this work, the surface states in TiO2 submicrospheres were thoroughly investigated by charge extraction methods, and the results were confirmed by the cyclic voltammetry method. The results showed that ammonia can effectively reduce the number of surface states in TiO2 submicrospheres. Furthermore, in-depth characterizations indicate that ammonia shifts the conduction band toward a more positive potential and improves the interfacial charge transfer. Moreover, charge recombination is effectively prevented. Overall, the cell performance is essentially dependent on the effect of the surface states, which affects the electron transfer and recombination process.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1577-4

DOI: 10.1007/s12274-017-1577-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.