4 years ago

Microfluidic bacterial traps for simultaneous fluorescence and atomic force microscopy

Mélanie Hannebelle, Jonathan D. Adams, Oliver Peric, Georg E. Fantner


The atomic force microscope has become an established research tool for imaging microorganisms with unprecedented resolution. However, its use in microbiology has been limited by the difficulty of proper bacterial immobilization. Here, we have developed a microfluidic device that solves the issue of bacterial immobilization for atomic force microscopy under physiological conditions. Our device is able to rapidly immobilize bacteria in well-defined positions and subsequently release the cells for quick sample exchange. The developed device also allows simultaneous fluorescence analysis to assess the bacterial viability during atomic force microscope imaging. We demonstrated the potential of our approach for the immobilization of rod-shaped Escherichia coli and Bacillus subtilis. Using our device, we observed buffer-dependent morphological changes of the bacterial envelope mediated by the antimicrobial peptide CM15. Our approach to bacterial immobilization makes sample preparation much simpler and more reliable, thereby accelerating atomic force microscopy studies at the single-cell level.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1604-5

DOI: 10.1007/s12274-017-1604-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.