5 years ago

Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode material for rechargeable batteries

Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode material for rechargeable batteries
A novel polytriphenylamine derivative, poly(4-carbamoyl-N,N-diphenylaniline-2,2,5,5-tetramethyl-pyrrolin-1-oxyl) (PTPA-PO) has been synthesized and utilized for the fabrication of the cathode material for organic rechargeable batteries for the first time. The molecular structure, morphology, and electrochemical performance of the obtained polymers were characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), scanning electron microscopy (SEM), cyclic voltammetry (CV), respectively. Additionally, the charge-discharge performance of the obtained polymers as cathode material were explored by galvanostatic charge-discharge tests. As a result, compared with PTPA, the as-prepared polymer presented an enhanced discharge capacity of 134.5 mAh·g−1 with two well-defined plateaus. Besides, the PTPA-PO, as the cathode material, exhibited an improved rate performance and remained above 90% of the initial capacity over 100 cycles. These outstanding electrochemical performances were attributed to the combination of the conducting polymer PTPA and the radical pendant PO together with the novel linear molecular structure, which not only provided a two-electron redox process, but also enhanced the charge carrier transportation along the polymer chain.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117309606

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.