3 years ago

Anisotropic nanoparticles as templates for the crystalline structure of an injection-molded isotactic polypropylene/TiO2 nanocomposite

Anisotropic nanoparticles as templates for the crystalline structure of an injection-molded isotactic polypropylene/TiO2 nanocomposite
We study the molecular origins of anisotropy in a semicrystalline polymer nanocomposite that is caused by aligned, elongated filler nanoparticles. Our study is based on spatially resolved 2D WAXS/SAXS data that indicates the arrangement of molecules, lamellae, and filler particles in the composite. Isotactic polypropylene (IPP) samples filled with anisotropic TiO2 nanoparticles were prepared by injection molding. The nanocomposite contained IPP crystals with preferential alignment, while neat IPP formed crystals with random orientation under the same preparation conditions. We studied the mechanism through which anisotropic TiO2 nanoparticles change the molecular assembly in the polymer melt and cause preferential alignment. Our hypothesis is that shear forces during injection molding align the long axis of the nanoparticles parallel to the melt flow direction, and the particles align the adjacent IPP molecules. The aligned IPP molecules in the melt then serve as nuclei in crystal growth during solidification. This templating increases the elastic modulus compared to that of neat IPP.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117309503

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.