5 years ago

Growth of polymer brushes by “grafting from” via ATRP – Monte Carlo simulations

Growth of polymer brushes by “grafting from” via ATRP – Monte Carlo simulations
The growth of polymer brushes from flat surfaces via a grafting-from approach by atom transfer radical polymerization (ATRP) was simulated using a Monte Carlo method, the dynamic lattice liquid (DLL) model, under athermal conditions. Sets of probabilities representing reactions participating in ATRP or overall ATRP reaction probability were implemented in the simulation model. The later corresponds to the ATRP system in which statistically less than one monomer is attached to the chain end during its active period. Dense and moderately dense brushes with degrees of polymerization 45–150 were studied assuming various polymerization rates. It was determined that chain length distribution strongly depends on the reaction probability and grafting density (GD). For dense brushes (GD = 0.3–0.6) the dispersity was comparable with the experimental results only for the lowest probabilities used (p = 2 × 10−5). For GD = 0.1 and in the presence of free chains 10 or even 100 times higher probabilities gave satisfactory results. If polymerization rate was too high, two groups of chains could be distinguished: slowly growing short chains, the ends of which were close to the flat surface, where monomer concentration was lower and quickly growing long chains with the ends far from the surface, where monomer concentrations were higher. The relationship between experimental parameters of ATRP and parameters used in the simulations are discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117309679

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.