4 years ago

Poly(ethylene glycol)-Mediated Collagen Gel Mechanics Regulates Cellular Phenotypes in a Microchanneled Matrix

Poly(ethylene glycol)-Mediated Collagen Gel Mechanics Regulates Cellular Phenotypes in a Microchanneled Matrix
Hyunjoon Kong, Marni Boppart, Max H. Rich, Min Kyung Lee, William C. Ballance
For the past few decades, efforts have been extensively made to reproduce tissue of interests for various uses including fundamental bioscience studies, clinical treatments, and even soft robotic systems. In these studies, cells are often cultured in micropores introduced in a provisional matrix despite that bulk rigidity may negatively affect cellular differentiation involved in tissue formation. To this end, we hypothesized that suspending cells within a soft fibrous matrix that is encapsulated within the microchannels of a provisional matrix would allow us to mediate effects of the matrix rigidity on cells and, in turn, to increase the cell differentiation level. We examined this hypothesis by filling microchannels interpenetrating alginate matrices with collagen gels of controlled elastic moduli (i.e., 125 to 1 Pa). Myoblasts used as a model predifferentiated cell were suspended within the collagen gels. The elastic modulus of the collagen gels was decreased through the addition of poly(ethylene glycol) during the gel preparation. Myoblasts loaded in the collagen gel exhibited a higher myogenic differentiation level than those adhered to the collagen-coated microchannel wall. Furthermore, the collagen gel softened by poly(ethylene glycol) further increased the volume of the multinucleated myofibers. The role of collagen gel softness on cell differentiation became more significant when the bulk elastic modulus of the alginate matrix was tuned to be close to that of muscle tissue (i.e., 11 kPa). We believe that the results of this study would be useful to understanding phenotypic activities of a wide array of cells involved in tissue development and regeneration.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00476

DOI: 10.1021/acs.biomac.7b00476

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.