4 years ago

Experimental and simulated investigation of temperature distribution of UHMWPE laminated composites during hot pressing process

Experimental and simulated investigation of temperature distribution of UHMWPE laminated composites during hot pressing process
Xiao Dong Zhou, Min Li, Bingbing Guo, Jing Li, Zheng Zeng
In this article, the influence of molding temperature on the mechanical properties and ballistic impact behavior of the ultrahigh molecular weight polyethylene (UHMWPE) laminated composites has been investigated. The results demonstrate that with the temperature increasing from 80 to 120 °C, the tensile strength decreases while the interlaminar bonding strength increases. The UHMWPE laminated composites manufactured by hot pressing of 75 layers UHMWPE fabrics show excellent ballistic performance when the molding temperature reaches 120 °C, indicating that dominant failure mechanism of the UHMWPE laminated composites are delamination, the fiber tension as well as bulging. Furthermore, a numerical model has been proposed to predict the temperature distribution of the UHMWPE laminated composites for a better understanding of the effect of molding temperature on the ballistic performance. The results show that the simulated results and experimental data are in good agreement. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45874.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45874

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.