3 years ago

An Analytic Approximation to the Bayesian Detection Statistic for Continuous Gravitational Waves.

John T. Whelan, John J. Bero

We consider the Bayesian detection statistic for a targeted search for continuous gravitational waves, known as the $\mathcal{B}$-statistic. This is a Bayes factor between signal and noise hypotheses, produced by marginalizing over the four amplitude parameters of the signal. We show that by Taylor-expanding to first order in certain averaged combinations of antenna patterns (elements of the parameter space metric), the marginalization integral can be performed analytically, producing a closed-form approximation in terms of confluent hypergeometric functions. We demonstrate using Monte Carlo simulations that this approximation is as powerful as the full $\mathcal{B}$-statistic, and outperforms the traditional maximum-likelihood $\mathcal{F}$-statistic, for several observing scenarios which involve an average over sidereal times. We also show that the approximation does not perform well for a near-instantaneous observation, so the approximation is suited to long-time continuous wave observations rather than transient modelled signals such as compact binary inspiral.

Publisher URL: http://arxiv.org/abs/1808.05453

DOI: arXiv:1808.05453v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.