3 years ago

Identification and Characterization of an Inside-Out Folding Intermediate of T4 Phage Sliding Clamp

Identification and Characterization of an Inside-Out Folding Intermediate of T4 Phage Sliding Clamp
Vikas Jain, Manika Indrajit Singh

Abstract

Protein folding process involves formation of transiently occurring intermediates that are difficult to isolate and characterize. It is both necessary and interesting to characterize the structural conformations adopted by these intermediates, also called molten globules (MG), to understand protein folding. Here, we investigated the equilibrium (un)folding intermediate state of T4 phage gene product 45 (gp45, also known as DNA polymerase processivity factor or sliding clamp) obtained during chemical denaturation. We show that gp45 undergoes substantial conformational rearrangement during unfolding and forms an expanded dry-MG. By monitoring the fluorescence of tryptophans that were strategically introduced at various sites, we demonstrate that the urea-treated molecule has its surface residues flip inside the core, and closely placed residues move farther. We were also able to isolate and purify the MG form of gp45 in native condition (i.e., nondenaturing buffer, at physiological pH and temperature); characteristics of this purified molecule substantially match with urea-treated wild-type gp45. To the best of our knowledge, this is one of the few reports that demonstrate the isolation and purification of a protein folding intermediate in native condition. We believe that our work not only allows us to dissect the process of protein folding, but will also help in the designing of folding inhibitors against sliding clamps to treat a wide variety of diseases from bacterial infection to cancer, due to the vast presence of clamps in all the domains of life.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30966-9

DOI: 10.1016/j.bpj.2017.08.043

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.