3 years ago

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy
Marco Brucale, Mariano Beltramini, Isabella Tessari, Maria Grazia Ortore, Valeria Militello, Luigi Bubacco, Federica Piccirilli, Andrea Perucchi, Nicoletta Plotegher, Francesco Spinozzi, Stefano Lupi, Paolo Mariani


The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1–99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30965-7

DOI: 10.1016/j.bpj.2017.08.042

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.