3 years ago

Chaotic and non-chaotic response to quasiperiodic forcing: limits to predictability of ice ages paced by Milankovitch forcing.

Charles David Camp, Peter Ashwin, Anna S. von der Heydt

It is well known that periodic forcing of a nonlinear system, even of a two-dimensional autonomous system, can produce chaotic responses with sensitive dependence on initial conditions if the forcing induces sufficient stretching and folding of the phase space. Quasiperiodic forcing can similarly produce chaotic responses, where the transition to chaos on changing a parameter can bring the system into regions of strange non-chaotic behaviour. Although it is generally acknowledged that the timings of Pleistocene ice ages are at least partly due to Milankovitch forcing (which may be approximated as quasiperiodic, with energy concentrated near a small number of frequencies), the precise details of what can be inferred about the timings of glaciations and deglaciations from the forcing is still unclear. In this paper, we perform a quantitative comparison of the response of several low-order nonlinear conceptual models for these ice ages to various types of quasiperiodic forcing. By computing largest Lyapunov exponents and mean periods, we demonstrate that many models can have a chaotic response to quasiperiodic forcing for a range of forcing amplitudes, even though some of the simplest conceptual models do not. These results suggest that pacing of ice ages to forcing may have only limited determinism.

Publisher URL: http://arxiv.org/abs/1804.08331

DOI: arXiv:1804.08331v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.