3 years ago

Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy

Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy
Christopher V. Kelly, Abir M. Kabbani


For endocytosis and exocytosis, membranes transition among planar, budding, and vesicular topographies through nanoscale reorganization of lipids, proteins, and carbohydrates. However, prior attempts to understand the initial stages of nanoscale bending have been limited by experimental resolution. Through the implementation of polarized localization microscopy, this article reports the inherent membrane bending capability of cholera toxin subunit B (CTxB) in quasi-one-component-supported lipid bilayers. Membrane buds were first detected with <50 nm radius, grew to >200 nm radius, and extended into longer tubules with dependence on the membrane tension and CTxB concentration. Compared to the concentration of the planar-supported lipid bilayers, CTxB was (12 ± 4)× more concentrated on the positive curvature top and (26 ± 11)× more concentrated on the negative Gaussian curvature neck of the nanoscale membrane buds. CTxB is frequently used as a marker for liquid-ordered lipid phases; however, the coupling between CTxB and membrane bending provides an alternate understanding of CTxB-induced membrane reorganization. These findings allow for the reinterpretation of prior observations by correlating CTxB clustering and diffusion to CTxB-induced membrane bending. Single-particle tracking was performed on single lipids and CTxB to reveal the correlations among single-molecule diffusion, CTxB accumulation, and membrane topography. Slowed lipid and CTxB diffusion was observed at the nanoscale bud locations, suggesting a local increase in the effective membrane viscosity or molecular crowding upon membrane bending. These results suggest inherent CTxB-induced membrane bending as a mechanism for initiating CTxB internalization in cells that could be independent of clathrin, caveolin, actin, and lipid phase separation.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30925-6

DOI: 10.1016/j.bpj.2017.08.031

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.