3 years ago

Hybrid entanglement of three quantum memories with three photons.

Bo Jing, Jian-Wei Pan, Sheng-Jun Yang, Wen-Hao Jiang, Xu-Jie Wang, Xi-Yu Luo, Jun Zhang, Peng-Fei Sun, Yan Jiang, Xiao-Hui Bao, Xiao Jiang, Yong Yu

Quantum network has significant applications both practically and fundamentally. A hybrid architecture with photons and stationary nodes is highly promising. So far, experimental realizations are limited to two nodes with two photons. Going beyond state of the art by entangling many photons with many quantum nodes is highly appreciated. Here, we report an experiment realizing hybrid entanglement between three photons and three atomic-ensemble quantum memories. We make use of three similar setups, in each of which one pair of photon-memory entanglement with high overall efficiency is created via cavity enhancement. Through three-photon interference, the three quantum memories get entangled with the three photons. Via measuring the photons and applying feedforward, we heraldedly entangle the three memories. Our work demonstrates the largest size of hybrid memory-photon entanglement, which may be employed as a build block to construct larger and complex quantum network.

Publisher URL: http://arxiv.org/abs/1808.05393

DOI: arXiv:1808.05393v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.