4 years ago

Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens

Succinic acid is a platform chemical of recognized industrial value and accordingly faces a continuous challenge to enable manufacturing from most attractive raw materials. It is mainly produced from glucose, using microbial fermentation. Here, we explore and optimize succinate production from sucrose, a globally applied substrate in biotechnology, using the rumen bacterium Basfia succiniciproducens DD1. As basis of the strain optimization, the yet unknown sucrose metabolism of the microbe was studied, using 13C metabolic flux analyses. When grown in batch culture on sucrose, the bacterium exhibited a high succinate yield of 1molmol-1 and a by-product spectrum, which did not match the expected PTS-mediated sucrose catabolism. This led to the discovery of a fructokinase, involved in sucrose catabolism. The flux approach unraveled that the fructokinase and the fructose PTS both contribute to phosphorylation of the fructose part of sucrose. The contribution of the fructokinase reduces the undesired loss of the succinate precursor PEP into pyruvate and into pyruvate-derived by-products and enables increased succinate production, exclusively via the reductive TCA cycle branch. These findings were used to design superior producers. Mutants, which (i) overexpress the beneficial fructokinase, (II) lack the competing fructose PTS, and (iii) combine both traits produce significantly more succinate. In a fed-batch process, B. succiniciproducens ΔfruA achieved a titer of 71gL-1 succinate and a yield of 2.5molmol-1 from sucrose.

Publisher URL: www.sciencedirect.com/science

DOI: S1096717617301751

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.