4 years ago

Elaboration of tetravalent antibody responses against dengue viruses using a subunit vaccine comprised of a single consensus dengue envelope sequence

Dengue viruses (DENVs) are re-emerging pathogens transmitted by mosquitoes mainly in tropical and subtropical regions. Each year, they are estimated to infect 390 million people globally. The major challenge confronting dengue vaccine development is the need to induce balanced, long lasting tetravalent immune responses against four co-circulating virus serotypes (DENV-I, -II, -III, -IV), because primary infection by any one of which may predispose infected individuals to more severe diseases during a heterotypic secondary infection. Another difficulty is to select representative strains in vaccine design to provide cross-protection against most circulating virus strains. In this study, aimed at developing a tetravalent subunit vaccine with a representative single protein, we designed two vaccines (named cE80(D4) and cE80(max)) based on the consensus sequences of the ectodomain of envelope protein of 3127 DENV strains, and then expressed them in the baculovirus expression system. Both vaccines were capable of eliciting specific antibodies against all four DENV serotypes, and the predominant IgG subtype elicited by the two vaccines was IgG1. Moreover, these vaccines activated both type I and type II antigen-specific helper T cells that secreted IFN-γ and IL-4, respectively. This proof-of-concept study has set foundation for further optimization of a single protein-based tetravalent DENV vaccine.

Publisher URL: www.sciencedirect.com/science

DOI: S0264410X17313166

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.