3 years ago

Variety is the spice of life: how to explore a redox-dependent heterogeneity in genomically identical cellular populations

Meytal Radzinski, Dana Reichmann

Abstract

Cellular heterogeneity is a widespread phenomenon, existing across organisms and serving a crucial role in evolution and cell survival. Genetically identical cells may as a result present in a variety of forms with different gene and protein expressions, as well as oxidation level. As a result, a wide range of methodologies and techniques for dissecting different types of genetic, proteomic, and phenotypic heterogeneous traits have emerged in recent years in an effort to better understand how diversity exists within a single population and its effects therein. A key area of interest seeks to establish the ways in which cellular heterogeneity and aging processes interact with each other. Here, we discuss recent developments in defining cellular heterogeneity, specifically focusing on redox-dependent heterogeneity, its characterization, quantification, and behavior. We further expand on potential applications of a cell sorting-based methodology for distinguishing between cells harboring different redox statuses. As an example, we use organelle-specific fluorescence protein-based probes to examine the crosstalk between cytosol and mitochondria in a yeast strain lacking glutathione reductase. Together, these may have wide-reaching implications for future research into redox-associated factors, as well as mechanisms of redox-dependent heterogeneity and its influence on organelles and the cell at large.

Publisher URL: https://link.springer.com/article/10.1007/s00294-018-0878-9

DOI: 10.1007/s00294-018-0878-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.