3 years ago

[ASAP] Soluble Zwitterionic Poly(sulfobetaine) Destabilizes Proteins

[ASAP] Soluble Zwitterionic Poly(sulfobetaine) Destabilizes Proteins
Caitlin M. Davis, Martin Gruebele, Drishti Guin, Kali A. Serrano, Elizabeth A. Murphy, Lydia Kisley, Deborah E. Leckband
The widespread interest in neutral, water-soluble polymers such as poly(ethylene glycol) (PEG) and poly(zwitterions) such as poly(sulfobetaine) (pSB) for biomedical applications is due to their widely assumed low protein binding. Here we demonstrate that pSB chains in solution can interact with proteins directly. Moreover, pSB can reduce the thermal stability and increase the protein folding cooperativity relative to proteins in buffer or in PEG solutions. Polymer-dependent changes in the tryptophan fluorescence spectra of three structurally-distinct proteins reveal that soluble, 100 kDa pSB interacts directly with all three proteins and changes both the local polarity near tryptophan residues and the protein conformation. Thermal denaturation studies show that the protein melting temperatures decrease by as much as ∼1.9 °C per weight percent of polymer and that protein folding cooperativity increases by as much as ∼130 J mol–1 K–1 per weight percent of polymer. The exact extent of the changes is protein-dependent, as some proteins exhibit increased stability, whereas others experience decreased stability at high soluble pSB concentrations. These results suggest that pSB is not universally protein-repellent and that its efficacy in biotechnological applications will depend on the specific proteins used.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.8b01120

DOI: 10.1021/acs.biomac.8b01120

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.